Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(8): 2357-2368, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289166

RESUMO

Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.


Assuntos
Evolução Biológica , Genoma de Inseto , Hemípteros/genética , Seleção Genética , Cromossomo X , Animais , Feminino , Masculino
2.
Front Microbiol ; 9: 2920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542338

RESUMO

The symbiosis established between arbuscular mycorrhizal fungi (AMF) and roots of most land plants plays a key role in plant nutrient acquisition and alleviation of environmental stresses. Despite the ubiquity of the symbiosis, AMF and host species display significant specificity in their interactions. To clarify preferential associations between wheat (Triticum aestivum) and AMF, we characterized root AMF communities in the transition from two first host species, ryegrass (Lolium rigidum) and yellow-serradella (Ornithopus compressus), grown separately or together, to a second host (wheat), by sequencing the large subunit ribosomal DNA (LSU rDNA) gene. The response of AMF communities in wheat to prior soil disturbance - and consequently of the mycelial network [intact extraradical mycelium (ERM) vs. disrupted mycelium] established with either of the first hosts - was also investigated. Since the outcome of a specific host-symbiont interaction depends on the molecular responses of the host plant upon microbial colonization, we studied the expression of six key symbiosis-related genes in wheat roots. AMF communities on L. rigidum and O. compressus roots were clearly distinct. Within an undisturbed ERM, wheat AMF communities were similar to that of previous host, and O. compressus-wheat-AMF interactions supported a greater growth of wheat than L. rigidum-wheat-AMF interactions. This effect declined when ERM was disrupted, but generated a greater activation of symbiotic genes in wheat, indicating that plant symbiotic program depends on some extent on the colonizing symbiont propagule type. When a mixture of L. rigidum and O. compressus was planted, the wheat colonization pattern resembled that of O. compressus, although this was not reflected in a greater growth. These results show a lasting effect of previous hosts in shaping wheat AMF communities through an efficient use of the established ERM, although not completely obliterating host-symbiont specificity.

3.
Braz. j. microbiol ; 40(2): 292-295, Apr.-June 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-520232

RESUMO

PtSRR1 EST was previously identified in the first hours of Pisolithus tinctorius and Castanea sativa interaction. QRT-PCR confirmed PtSRR1 early expression and in silico preliminary translated peptide analysis indicated a strong probability that PtSRR1 be a transmembrane protein. These data stimulate the PtSRR1 gene research during ectomycorrhiza formation.


PtSRR1 foi isolado preliminarmente de P. tinctorius nas primeiras horas da interação com raízes de C. sativa. Análises de QRT-PCR confirmaram sua expressão positiva (12 h) e seu peptídeo putativo indicou forte possibilidade para proteína transmembranar. Estes dados estimulam o estudo do PtSRR1 durante a formação de ectomicorrizas.


Assuntos
Castanea vesca/análise , Técnicas In Vitro , Micorrizas , Reação em Cadeia da Polimerase , Proteínas de Membrana/análise , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Simbiose/genética , Métodos , Métodos , Virulência
4.
Braz J Microbiol ; 40(2): 292-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031360

RESUMO

PtSRR1 EST was previously identified in the first hours of Pisolithus tinctorius and Castanea sativa interaction. QRT-PCR confirmed PtSRR1 early expression and in silico preliminary translated peptide analysis indicated a strong probability that PtSRR1 be a transmembrane protein. These data stimulate the PtSRR1 gene research during ectomycorrhiza formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...